A fault segment location method for distribution networks based on spiking neural P systems and Bayesian estimation

نویسندگان

چکیده

Abstract With the increasing scale of distribution networks and mass access distributed generation, traditional centralized fault location methods can no longer meet performance requirements speed high accuracy. Therefore, this paper proposes a segment method based on spiking neural P systems Bayesian estimation for with generation. First, network system topology is decoupled into single-branch networks. A excitatory inhibitory synapses then proposed to model suspected faulty segment, its matrix reasoning algorithm executed obtain preliminary set results. Finally, contradiction principle are applied verify correct initial results final Simulation IEEE 33-node validate feasibility effectiveness method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

fault location in power distribution networks using matching algorithm

چکیده رساله/پایان نامه : تاکنون روش‏های متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روش‏ها در شبکه توزیع به دلایلی همچون وجود انشعاب‏های متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تک‏فاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...

Fault Location in Distribution Systems Based on Artificial Neural Networks and Application of Gis

This paper presents a novel approach for fault location in distribution system using neural network. The voltage and current in the instance of fault are used for training. Different faults are simulated in a specific feeder by PSCAD software. The MATLAB and EMTDC are used for simulation in this work. The results of case studies show the capability of neural networks in fault location with negl...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

Spiking Neural P Systems – A Natural Model for Sorting Networks

This paper proposes two simulations of sorting networks with spiking neural P systems. A comparison between different models is also made.

متن کامل

Fault Section Estimation of Power Systems with Optimization Spiking Neural P Systems

An optimization spiking neural P system (OSNPS) provides a novel way to directly use a P system to solve optimization problems. This paper discusses the practical application of OSNPS for the first time and uses it to solve the power system fault section estimation problem formulated by an optimization problem. When the status information of protective relays and circuit breakers read from a su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Protection and Control of Modern Power Systems

سال: 2023

ISSN: ['2367-0983', '2367-2617']

DOI: https://doi.org/10.1186/s41601-023-00321-x